七彩课堂欢迎你们的加入!

电气工程师|18种常见开关电源拓扑结构特点和优缺点大对比!

最新资讯 admin 1095次浏览 0个评论

本文主要讲述常见的开关电源拓扑结构特点和优缺点对比~ 常见的拓扑结构,包括Buck降压,Boost升压,Buck-Boost降压-升压,Flyback反激,Forward正激,Two-Transistor Forward双晶体管正激等,具体的就随小编来看看吧!

点击了解电气工程师 教学培训班详情

基本名词

常见的基本拓扑结构

■Buck降压

■Boost升压

■Buck-Boost降压-升压

■Flyback反激

■Forward正激

■Two-Transistor Forward双晶体管正激

■Push-Pull推挽

■Half Bridge半桥

■Full Bridge全桥

■SEPIC

■C’uk

基本的脉冲宽度调制波形

这些拓扑结构都与开关式电路有关。

基本的脉冲宽度调制波形定义如下:

常见的基本拓扑结构

1、Buck降压

特点■把输入降至一个较低的电压。■可能是最简单的电路。■电感/电容滤波器滤平开关后的方波。■输出总是小于或等于输入。■输入电流不连续 (斩波)。■输出电流平滑。

2、Boost升压

特点■把输入升至一个较高的电压。■与降压一样,但重新安排了电感、开关和二极管。■输出总是比大于或等于输入(忽略二极管的正向压降)。■输入电流平滑。■输出电流不连续 (斩波)。

3、Buck-Boost降压-升压

特点■电感、开关和二极管的另一种安排方法。■结合了降压和升压电路的缺点。■输入电流不连续 (斩波)。■输出电流也不连续 (斩波)。■输出总是与输入反向 (注意电容的极性),但是幅度可以小于或大于输入。■“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。

4、Flyback反激

特点■如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。■输出可以为正或为负,由线圈和二极管的极性决定。■输出电压可以大于或小于输入电压,由变压器的匝数比决定。■这是隔离拓扑结构中最简单的■增加次级绕组和电路可以得到多个输出。

5、Forward正激

特点■降压电路的变压器耦合形式。■不连续的输入电流,平滑的输出电流。■因为采用变压器,输出可以大于或小于输入,可以是任何极性。■增加次级绕组和电路可以获得多个输出。■在每个开关周期中必须对变压器磁芯去磁。常用的做法是增加一个与初级绕组匝数相同的绕组。■在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。

6、Two-Transistor Forward双晶体管正激

特点■两个开关同时工作。■开关断开时,存储在变压器中的能量使初级的极性反向,使二极管导通。■主要优点:■每个开关上的电压永远不会超过输入电压。■无需对绕组磁道复位。

点击了解电气工程师 教学培训班详情

7、Push-Pull推挽

特点■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。■良好的变压器磁芯利用率—在两个半周期中都传输功率。■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。■施加在FET上的电压是输入电压的两倍。

8、Half-Bridge半桥

特点■较高功率变换器极为常用的拓扑结构。■开关(FET)的驱动不同相,进行脉冲宽度调制(PWM)以调节输出电压。■良好的变压器磁芯利用率—在两个半周期中都传输功率。而且初级绕组的利用率优于推挽电路。■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。■施加在FET上的电压与输入电压相等。

9、Full-Bridge全桥

特点■较高功率变换器最为常用的拓扑结构。■开关(FET)以对角对的形式驱动,进行脉冲宽度调制(PWM)以调节输出电压。■良好的变压器磁芯利用率—在两个半周期中都传输功率。■全波拓扑结构,所以输出纹波频率是变压器频率的两倍。■施加在 FETs上的电压与输入电压相等。■在给定的功率下,初级电流是半桥的一半。

10、SEPIC单端初级电感变换器

特点■输出电压可以大于或小于输入电压。■与升压电路一样,输入电流平滑,但是输出电流不连续。■能量通过电容从输入传输至输出。■需要两个电感。

11、C’uk(Slobodan C’uk的专利)

特点■输出反相■输出电压的幅度可以大于或小于输入。■输入电流和输出电流都是平滑的。■能量通过电容从输入传输至输出。■需要两个电感。■电感可以耦合获得零纹波电感电流。

电路工作的细节

下面讲解几种拓扑结构的工作细节

■降压调整器:连续导电/临界导电/不连续导电

■升压调整器 (连续导电)

■变压器工作

■反激变压器

■正激变压器

1、Buck-降压调整器-连续导电

■电感电流连续。■Vout 是其输入电压 (V1)的均值。■输出电压为输入电压乘以开关的负荷比 (D)。■接通时,电感电流从电池流出。■开关断开时电流流过二极管。■忽略开关和电感中的损耗, D与负载电流无关。■降压调整器和其派生电路的特征是:输入电流不连续 (斩波), 输出电流连续 (平滑)。

2、Buck-降压调整器-临界导电

■电感电流仍然是连续的,只是当开关再次接通时 “达到”零。这被称为 “临界导电”。输出电压仍等于输入电压乘以D。

3、Buck-降压调整器-不连续导电

■在这种情况下,电感中的电流在每个周期的一段时间中为零。■输出电压仍然 (始终)是 v1的平均值。■输出电压不是输入电压乘以开关的负荷比 (D)。■当负载电流低于临界值时,D随着负载电流而变化(而Vout保持不变)。

4、Boost升压调整器

■输出电压始终大于(或等于)输入电压。■输入电流连续,输出电流不连续(与降压调整器相反)。■输出电压与负荷比(D)之间的关系不如在降压调整器中那么简单。在连续导电的情况下:

在本例中,Vin = 5,Vout = 15, and D = 2/3.Vout = 15,D = 2/3.

5、变压器工作(包括初级电感的作用)

■变压器看作理想变压器,它的初级(磁化)电感与初级并联。

6、反激变压器

■此处初级电感很低,用于确定峰值电流和存储的能量。当初级开关断开时,能量传送到次级。

7、Forward 正激变换变压器

■初级电感很高,因为无需存储能量。■磁化电流 (i1) 流入 “磁化电感”,使磁芯在初级开关断开后去磁 (电压反向)。

总结

本文回顾了目前开关式电源转换中最常见的电路拓扑结构。除此之外还有许多拓扑结构,但大多是这些拓扑的组合或变形。

每种拓扑结构包含独特的设计权衡:施加在开关上的电压,斩波和平滑输入输出电流,绕组的利用率。

选择最佳的拓扑结构需要研究:输入和输出电压范围,电流范围,成本和性能、大小和重量之比。

点击了解电气工程师 教学培训班详情


七彩课堂 , 版权所有丨如未注明 , 均为原创丨转载请注明电气工程师|18种常见开关电源拓扑结构特点和优缺点大对比!
喜欢 (0)
发表我的评论
取消评论

表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

暖通设计,电气设计